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On the Connection between the One-Dimensional 
S =  1/2 Heisenberg Chain and 
Haldane-Shastry Model 
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Extra integrals of motion and the Lax representation are found for interacting 
spin systems with the Hamiltonian H =  (J/2)Z~'k-l,j,~k ~ ( j - k ) % a k ,  where 
one of the periods of the Weierstrass ~ function is equal to N. The Heisenberg 
and Haldane-Shastry chains appear as limiting cases of these systems at some 
values of the second period. The simplest eigenvectors and eigenvalues of H 
corresponding to the scattering of two spin waves are presented explicitly for 
these finite-dimensional systems and for their infinite-dimensional version. 

KEY WORDS:  Integrability; spin chains; magnons; elliptic functions. 

1. I N T R O D U C T I O N  

This paper is devoted to the study of the problem of the integrability of 
one-dimensional, S = 1 /2  spin chains with the Hamiltonian 

j N 
h( j - k )  a~6k, h(x)=h(-x), x s 2  (1) 

H=-2 j ,  =1 

which have long been used as a model of ferromagnetism and anti- 
ferromagnetism. The simplest possible model of the type (1) is the 
famous periodic Heisenberg chain (*) with interaction only between nearest 
neighbors, 

h(x )=(~ lx+(~N_l , x ,  O < x < N  (2) 

It is well known that this model can be included in the Yang-Baxter 
scheme and has a transfer matrix with a dependence on a complex 
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parameter. All the local integrals of motion can be generated as derivatives 
of the logarithm of the transfer matrix with respect to this parameter 
evaluated at a fixed point. (2) The spectrum is relatively complicated and 
can be obtained by solving the set of transcendental equations of the Bethe 
ansatz. 

Recently Haldane (3) and Shastry (4) have constructed a number of 
eigenvectors of the Hamiltonian (1) with the "potential" 

g2 

h(x  ) - N2 sin2(rcx/N ) (3) 

The spectrum of this model seems to be completely equidistant, and 
most of the energy levels are highly degenerate. There is no doubt about 
the integrability of such a system, but the extra integrals of motion have 
not been found. 

Nothing is known about the analog of the transfer matrix and the 
connection of the model with the Yang-Baxter equations. 

It is natural to suppose that the integrability of spin-l/2 chains like (1) 
and of one-dimensional systems of interacting particles in classical 
mechanics is based on essentially the same Lie-algebraic grounds. One can 
expect a deep analogy between them, as mentioned also in ref. 4. One of the 
purposes of this paper is to exploit methods known in classical dynamics 
for the investigation of quantum systems (1). I show that the "potentials" 
(2) and (3) are connected in a simple but unusual way. The systems (1) 
share some common properties with them. Some extra integrals of motion 
for the Haldane-Shastry model are also presented. 

2. THE LAX REPRESENTATION 

The integrability in classical dynamics in most cases is associated with 
the existence of the Lax representation of the equations of motion, i.e., the 
equivalence of these equations to the bilinear matrix relation 

dL 
d--7= {Hcl , L} = [L, M]  (4) 

where L and M are quadratic (possibly infinite) matrices depending on 
dynamical variables, [ - . . ]  is the matrix commutator, Hol is the classical 
Hamiltonian, and {... } is the Poisson bracket. As a consequence of (4), all 
the invariants of L, for example, I k = tr(Lk), k e 7/, belong to the variety of 
classical integrals of motion. 

For systems of particles interacting with each other through pair 
potentials, the structure of the matrices L and M was established in ref. 5. 
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In the case of interacting spins it is natural to construct operator-valued 
matrices L and M obeying the quantum analog of Eq. (4), 

[H, L ]j k = [L, M]jk = ~ (Lj, M l k -  Mj, L,k) (5) 
l 

where the elements of the matrix [H, L]  on the left-hand side are com- 
mutators of the Hamiltonian and matrix elements ofL. 2 The proper 
modification of the classical ansatz (5) in this case is the following: the 
dimensions of L and M equal the number of spins N, and 

Lj~ = (1 - fijx) f ( J -  k)(1 + ~j~k) 
N (6) 

M:k = (1 + ~ ' j O ' k ) ( l  - -  (~jk) g ( j - k )  + 6jk ~ z(j--s)(1 + ~j~s) 
sr 

where 6 is the usual Kronecker symbol (all the diagonal elements of L are 
equal to zero), and f ,  g, and z are unknown functions of the argument 
x e Z. It is easy to show by direct substitution of (1) and (6) into (5) that 
the "quantum Lax representation" exists if the following conditions are 
satisfied for all nonzero x, y e 2: 

z(x) = -h(x )  (7a) 

f (x )  g ( y ) - f ( y )  g ( x ) = f ( x  + y ) [ h ( y ) -  h(x)] (7b) 

f (x )  g ( - x )  - f ( - x )  g(x) = f ( x  + N) g( - x  - N) - f ( - x -  N) g(x + N) 

(7c) 

The first two conditions appear also in the classical theory, where the 
arguments x and y are arbitrary real or complex numbers. The last condi- 
tion of periodicity, (7c), appears only for the spin chains and is completely 
absent for continuum systems. 

The general solution to (7a) and (7b) is well known. (6) Up to a trivial 
exponential factor, it is given by the formulas 

h(x) = - z (x )  = - f ( x )  f ( - x )  + const -- ~ ( x )  + const 

df(x) (8a) 
g(x) = dx 

~ ( x - ~ )  
f (x )  a(x) a(~) exp[x~'(:0] (8b) 

2 Note that (5) differs slightly from the equation of Calogero et al., (8) who used the definition 
[L, M]jk= �89 {Lj,, M,k ) -- {Mjt , L,k }. 
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where N(x), ~(x), and a(x)  are the usual Weierstrass elliptic functions 

,~(x) = 1 +  , 1 

1 
~'(x) = - ~ ( x ) ,  ~(x) - - ~ 0 at 

x 

~ 
a'(x) = if(x) a(x), ~ 1 at 

x 

x ~ 0  (9) 

x ~ 0  

The sum in (9) runs over all points of the lattice F on the complex 
plane, F = { m l c o l + m 2 c o 2 }  [ml,  m2sT/; COl, co2~C; Im(co2/col)r  
except for the origin of the coordinate system rn~ = ma = 0. The "spectral 
parameter" ~ is defined on a complex torus C/F. 

The function (8b) also obeys the elliptic Lain6 equation. (6) The last 
condition (7c) is satisfied if and only if one of the periods of the Weierstrass 
functions (for example, co~) is equal to N. The choice of the second period 
co2 in the imaginary axis 

co2- co = i~c, Im ~c=0 (10) 

guarantees that N(x) is real at real x. For definiteness we shall choose tc 
to be positive. Finally, we have shown that the systems (1) with a real 
"potential" h ( x ) =  r depending on an arbitrary real parameter ~c have a 
"quantum Lax representation" of the type (5)-(8). 

Let us consider some limiting situations. As the second period co ~ ~ ,  
the asymptotic behavior of the ~ function is 

~ ( x )  I o~ ~ ~ = ~ 7  sin2Orx/N) - 

and we obtain, up to a trivial term proportional to the square of the total 
spin S commuting with all the Hamiltonians (1), the Haldane-Shastry 
chain. Another situation when the Weierstrass functions degenerate into 
trigonometric ones is the limit of a small second period. One finds 

~ ( x )  o = L~ + 4(e-(2=/~ Ixk + e-(2rr/K)IN-xl _~_ e-(a~/~)kN + xl) 

+ O(e-(4~/,~)txl +e-(4~/~)lu xL +e-(4~/~lu+xl) ,  Ixl <N,  x e Y  

By adding to the Hamiltonian (1) with h ( x ) = ~ ( x )  the term 
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-- (JTr2/6tc2)(4S 2 -- 3N), performing the "renormalization" of the constant J 
in (1), J-- ,  (Jtc;/4g 2) exp(27c/~c), and taking the limit co--, 0, we obtain 

h~ = ~01im ~ exp ~ ( x )  - ~ K  2 

=C51x+6N_l.x, X~Z, 0 < x < N  

which is the "potential" of the periodic Heisenberg chain. We see that both 
models (2) and (3) can be obtained from (Sa) as some limits and also have 
a Lax representation of the type (5)-(8). The situation is completely 
analogous to the case of continuum classical models where the periodic 
Toda and Sutherland particle systems can be treated as the limits of 
systems with interaction through an elliptic potentiaU 7) 

Finally, when the number of spins and, consequently, the real period 
of ~ tend to infinity, 

5~(x) IN~ ~ -- ~C2 sinh2~- x/~c) + 

and we get a model for an infinite one-dimensional magnetic chain with 
short-range interaction depending on the parameter ~c, 

7-s 2 

h~(x) --- ~:2 sinh2(~x/K) (12) 

Taking the limit Jc-~ 0 after a trivial renormalization of J in (I), 
J--~(JK2/47c2)e2~/'~, we obtain an infinite Heisenberg chain treated by 
Bethe.~ 

3. THE EXTRA INTEGRALS OF M O T I O N  

In contrast to the classical models, the existence of the Lax matrices 
does not guarantee that the invariants of L would be integrals of motion 
in the quantum case. For  a matrix L of the form (6) the situation is even 
more pessimistic: it is easy to show that the first two invariants tr(L k) are 
trivial c-numbers, i.e., they do not depend on spin operators {%}. One 
needs a new way to construct nontrivial integrals. 

Let us consider the 2N x 2N operator-valued matrix 

(13) 

where tj = �89 + ~o%) and the Greek indices of A stand for elements of the 
extra Pauli matrices {ao }. The matrices tj have the usual properties, t2= 4, 

,1 
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tr(o) tjtk = �89 + %~k) (tr(o) denotes the trace over the indices of g0, and the 
multiplication of t's is performed so that {%} are treated as operator coef- 
ficients of ~o)- For the operator (13) there is no analog of the Lax equation 
(5). However, it is easy to show that, up to the square of the total spin S 2, 

1 N 
Tr A 2 ~- H-=- ~ ~ h ( j -  k) ~jnk, 

j , k ~  l , j ~ k  
h ( j -  k) = f ( j -  k) f ( k  - j )  

where Tr denotes the trace over both the Latin and Greek indices of A. 
The calculation of the next invariant of A, Tr A 3, gives, up to a constant 
additive term, 

i N 
T r  A 3 ~' - ~ E f ( J -  k) f ( k  - l) f ( l -  j)(~rjakcr~) 

jv~kv~l  

7 N 
+ ~j~, ~J~ 

N 

x • [ f ( j - k ) f ( k - l ) f ( l - j ) + f ( k - j ) f ( l - k ) f ( j - l ) ]  

t.j,k (14) 

where the operator (ajo-ka~)-= %-(~k x at) is completely antisymmetric in 
the indices (jkl). 

Direct calculation of the commutator of these invariants gives the 
following result: if f (x )  and h(x) obey the conditions (7b) and (7c) guaran- 
teeing the existence of the Lax representation (5), then 

[Tr A 2, Tr A 3 ] ~ 0 (15) 

1 
a ( x -  ~) o-(y - ~) ~r(x - y) 1 , 

o'3(x) a3(y) o3(~) 2 

The terms quartic in the spin operators disappear in the commutator 
if the functional equation (7b) is satisfied. The terms of third and second 
order in spin operators are absent if the periodicity (7c) also holds. 

The use of an explicit form of f (x)  in (8b) simplifies (14). With the 
help of addition theorems for ~ ,  ~ functions and the sigma-function 
formulas, we have 

~ ( x -  ~) ~(x + ~) ) 1 ~ (x )  
0"2(x) 0"2(~) -- I 1 ,~(~)  

~(x )  y ( x )  
~ ( y )  Y ( y )  
~(~) ~ '(~) 
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One can show that the second term in (14) is proportional to the 
square of S, and 

i 
Tr A 3 -~ - ~ [ i l ~ ( e )  + i2] + const. S 2 (16) 

where 
N 

:1= Z 
j # k ~ l  

N 

j ~ k r  

[ ~ ( j -  k) + ~ ( k -  l) + ~ ( l - j )  ](a:a~a:) 

{2[-~(j- k) + ~ ( k -  l) + ~ ( / -  j ) l  3 

+ ~ ' ( j -  k) + ~'( /~-/)  + ~ ' ( / -  j) } ( ~ : : ~ )  

Both the operators fl and f2 commute with the Hamiltonian because 
of Eqs. (15) and (16) and the arbitrariness of the "spectral parameter" ~. 
They are functionally independent. So the spin models are principally 
different at this point from classical particle systems, where the trace of the 
(k + 1)th power of the L matrix contains only one integral independent of 
the integrals in traces of the first k powers of L. 

For the trigonometric degeneration corresponding to the Haldane- 
Shastry model there are simpler combinations of the limits of f~, ]2: 

N 

is= ~ (p,(j-k)~o,(k-l)~Os(l-j)(~jak~,) ,  s = l ,  2 
j r 1 6 2  

rex / rex\ - 
~ol(x) = coth ~-  ~o2(x) = 

So, the first four terms of the decomposition of the operator 

r(2, ~) = Tr{exp [2A(cQ] } (17) 

in the parameter 2 give the integrals of motion for the model with the 
"potential" (8a). It is likely that (17) can be treated as the generating func- 
tion of these integrals depending on two parameters, 2 ~ C and e s C/F. 
One may suppose that this operator is a formal analog of the transfer 
matrix for this model (and the Haldane-Shastry model as a limiting case). 
There is not yet a full proof of this hypothesis finally confirming the 
integrability of the model. 

4. T H E  S I M P L E S T  E I G E N V E C T O R S  

Here we shall consider only the ferromagnetic case and investigate the 
state vectors corresponding to one or two spin waves. Let us denote by 10) 
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the state in which all spins have the same projection on the Z axis. Let the 
operator a + transform 10) to the state in which the sign of the projection 
of the j t h  spin on the Z axis is opposite. It is convenient to begin the con- 
sideration with a slightly simpler case of the infinite chain (12). 

We shall use a Hamiltonian differing from (1) and (12) by a constant 
term, (o o-1) 

Bco 2 ' ~co 10)=0 

j~k (18) 

The calculation of the energy of a spin wave with momentum p, 

@= ~ exp(ipk)a~ [0) (19) 
k =  co 

is based on the formula 
~2ezlc p 

F(z) = ~c2 {sinh [ (~)c)(k + z)]  }2 

~(z + r~) 

x {~(z)--~(rp)+[:(rp)--2r---s ] c o  

2 ~(z) ~(rp) ~ / J  (20) 

Henceforth co = i• and rp = -o~p/4~; ~,  ~', and ff are Weierstrass functions 
with periods (1, co). The derivation of (20) is based on the quasiperiodicity 
of the sum on its left-hand side, 

F(z + on) = F(z), F(z + 1 ) = exp( - ip) F(z) 

on the structure of its only singularity at the point z = 0  on a torus 
obtained by a factorization of a complex z plane on the lattice of periods 
(1, co), and on the Liouville theorem for elliptic functions. The substitution 
of (19) into the equation/~co~p = a(pl~Op gives 

- 2rp -/co 4"=  (rp) + 

+ 2 "~(rp) co \2]J  +--'(co (21) 



1 D Heisenberg and Haldane-Shastry Models 1151 

Taking the limit ; -+0 ,  after the multiplication of (21) by 
(K2/4~2) exp(2=/K) we get the standard dispersion relation for the spin 
wave in an infinite Heisenberg chain. 

Before constructing two-magnon states, note that formula (20) admits 
the following evident generalization ( leg) :  

7~2 e ikp 7~ 

k= -oo K2 {sinh[(~/~c)( k + z)] }2 coth -~c (k + l+  Z) 

~(z + rp) 
~ c~ (-~) exp [~-~ ~ ( 2 ) ]  

• ~(~)-~(r~)+ ~'(r~)->--e~ + ( l - e  -~') 
co K sinh(2~zl/~c) 

x(~'(z)-~'(rp) ~"!rp!~; (22) 
\ ~(z)--  ~(rp) ~'(rp)/) 

The scheme of the proof for (22) is the same as for (20). The structure 
of this formula shows that the two-magnon state is described by the vector 

k l , k  2 = --co ~ 

kl r k2 

I ~ 1 - 1  a + - +  • sinh ( k l - k 2 )  <uk~ [0) (23) 

substitution of which in I7/ d, (~) _~(2) ~/,I~) gives oo "V Pl P2 - -  vP l  p2 "r  Pl P2 

g ( 2 )  - -  g (1 )  _[_ g ( l )  (24) 
P l P 2  - -  Pl - -  P2 

where the e~ls ) are calculated according to (21), and the phase 7 is connec- 
ted with momenta Pl and P2 by the relation 

K I-~ , /p2w\ 

In the limit ~o-~ 0 this is just the expression for the Bethe phase in 
the Orbach parametrization. As for the infinite Heisenberg ferromagnet, 
according to (24), the additivity of magnon energies takes place. 
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In the case of finite spin systems, consider the Hamiltonian 

1 N % ~ k -  1 
/ t = - 2  jekZ ~(J-k) 2 

j,k=l 
BlO>=O 

In the same way as for (20) and (22), one can obtain the formulas for 
the sum of Weierstrass functions, 

exp mk r + z) 
k = 0  

8(z + rm) t/Z~'(e)/2) mz'~F ,~, , 
- i f (z - rm)  exp t N )L ~tzJ - ~ ( r ' )  

+I'((rm ) 2rm~/'O)\Ti~'(Z)--~'(rm) ~"(rm)7] (25a) 

where m ~ 22, m < N; t" m - =  -oom/2N, and 

N - - 1  

~(k+z) 
k = O  

a(k - l + 7 + z) 
exp(&k) 

~r(k-l  + z) 

~(1- ~) a(z + r~) 
a(l) ~ ( z - r ~ )  

x exp {~m' I ff ( N ) ~  ( 2 )  7 + i ( ( 2 )  ~]}  

~' ~ " r  

~(t- y) - ~(l) e'~'~(~) ~(Z) 
x ~(G,~) + 2 2~r(l- 7) 

~( l )  

+ ~(N/2) ~'(~/2)y + i~(co/2)(Z7" ~ 
47zi J J  

(25b) 

where ~ and 7 are connected by 

exp[io:N+ 7~(N/2)] = 1, leY_ 

r~, = - (4~)  -1 [uco + i 17ff(c0/2)] 

The expression for the energy of the spin wave (19) for which the 
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quasimomenta {p} are quantized according to the periodicity condition 
pm = (2~/N)m, 0 ~< m ~ N -  1, m ~ 2, can be easily found from (25a), 

(Dm 
eO)(pm ) = cP(rm), rm = -- - ~  

(r) k co 

Let us search 
analogous to (23), 

t ( N )  : 
p l  p2 

for the vectors of two-magnon states in a form 

N I a ( k l - k 2 + y )  

k l , k 2  = 1 
k l  r k2 

a(kl_k2)  ja<ak  210) (26) 

The quasimomenta p~ and P2 and the phase y must be determined 
from the periodicity conditions and H@I-(mp2__e(Z)p, p2~p,~//mp2. ~BY using 
Eq. (25b), one makes sure that (26) is just the eigenvector of H with the 
eigenvalue 

~:) = ~p(r~,~) + q ~ ( r ~ )  + ~ ( 7 )  - -  ~:(~) 
Pl  p2 

where 

rply = -(4~z) - I  [pt~o + i-ly~(~o/2)] 

rp2 ~ = - ( 4 ~ ) - '  [p2co + i ly~(co/2)] 

and (Pl, P2, 7) is an arbitrary solution of the system of transcendental 
equations 

exp [iplN + 2Y~ ( 2 ) ] =  I 

exp ip2N- 27~ = 1 

~(2rpl ,) - ~(2rp~,) + <-(c~ , -- r~l~) + 4~(o /2 )  ~ 
r  69  

- 2 ~ ( y ) = 0  
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In the limit ~o ~ 0 these equations coincide with the equations of the 
Bethe ansatz for the quasimomenta of two-magnon states in a periodic 
Heisenberg chain. 

The investigation of states with a larger number of magnons can be 
performed in the case of the infinite chain on the basis of the summation 
formula for trigonometric series generalizing (22), 

g2 eikp f i  
k= oo ~c2{sinh[(~/~c)(k+z)]} 2 e~ ~-(k+z+l~) 2=1 K 

~(Z + rp) 
- - - - -  exp [ ~  ~ ' (2 )1  5(z - rp) 

\a=l (~'(z)-~'(rp) ~"(r,)~ 
x (  f i  c~ g ) [ ~ ( z ) - ~ ' r P ) + \ - ~ ~  ~',rp,/ 

x @'(rp) - 2r" ~" ( ~ )  
o~ \ 2 /  

zc{@ ( 2 : , v ) '  ~ exp(--/p/v) 
+ - sinh - 2[sinh(~/~/~)] 2 /s v 1 v=l 

Ie~Iv 1 (  n 9 ) 1 } ) ]  x coth ~- (l~ - l~) 1-[ coth 
K A',2 = 1 

where {/x} are nonzero integers, and 1-[~>~(/~-/ , )~0.  There is an 
analogous formula for the summation of a finite series like (25) containing 
elliptic functions. However, in contrast to the infinite chain, this formula is 
not useful for the construction of eigenvectors of H. The situation bears a 
strong resemblance to quantum systems of particles on a line. In this case 
the wave functions can be easily found for the trigonometric Sutherland 
systems, but for elliptic potentials of pair interactions the single known 
result is a solution of the Lain6 equation for two-particle systems. At the 
classical level, the trajectories of particle systems in the elliptic case were 
found by Krichever (6) by the methods of algebraic geometry and the 
solution contained the multidimensional Riemann theta functions. To 
my knowledge, nobody at this time has indicated a way of solving the 
corresponding quantum problem. 

5. S U M M A R Y  

In this paper the simplest properties of the spin model generalizing the 
Heisenberg and Haldane-Shastry chains were found. The most important 
problem for further investigation is the proof of the hypothesis on the 
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existence of the generating function of integrals of motion (17) and finding 
its connection with the Yang-Baxter equations. As for purely calculational 
schemes, it would be interesting to indicate a simple way of constructing 
states with an arbitrary number of magnons, especially for the periodic 
chain. 

It would be interesting also to investigate the possibility of the destruc- 
tion of SU(2) symmetry of the Hamiltonian. In particular, one can expect 
in the XXZ case, as in the Haldane-Shastry model, the conservation of 
integrability for values of the anisotropy parameter A = m(m + 1 )/2, m ~ 2, 
m > 1. These numbers appear in the equations determining the Legendre 
polynomials and Lain6 functions as parameters at which these equations 
have solutions without any branch points. For problems of finding the 
eigenvectors of a Hamiltonian like (1), this corresponds to the possibility 
of analytical summation of series of the type 

rc 2 exp(ikp) [ ] 
k= -~  ~c2 {sinh[(~/tc)(k + z)] }2 P coth ~-~c (k + z) 

and their generalizations like (25) and (27) (P denotes an arbitrary polyno- 
mial). It is likely that the corresponding formulas would be lengthy and 
complicated. 
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